Những câu hỏi liên quan
ミ★Zero ❄ ( Hoàng Nhật )
Xem chi tiết
Đinh Đức Hùng
Xem chi tiết
Nguyễn Xuân Anh
10 tháng 2 2018 lúc 12:55

Từ giả thiết của bài toán, ta biến đổi như sau:

\(a^2+b^2+c^2+\left(a+b+c\right)^2\le4\)

\(\Leftrightarrow a^2+b^2+c^2+ab+ac+bc\le2\)
Bất đẳng thức cần chứng minh tương đương với

\(A=\frac{ab+1}{\left(a+b\right)^2}+\frac{bc+1}{\left(b+c\right)^2}+\frac{ac+1}{\left(a+c\right)^2}\ge3\)

\(\Leftrightarrow\frac{2ab+2}{\left(a+b\right)^2}+\frac{2bc+2}{\left(b+c\right)^2}+\frac{2ac+2}{\left(a+c\right)^2}\ge6\)
Áp dụng giả thiết ta được

\(\frac{2ab+2}{\left(a+b\right)^2}+\frac{2ab+2}{\left(b+c\right)^2}+\frac{2ac+2}{\left(a+c\right)^2}\ge\text{∑}\frac{2ab+a^2+b^2+c^2+ab+bc+ac}{\left(a+b\right)^2}\)

\(=1+\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}+1+\frac{\left(b+a\right)\left(c+b\right)}{\left(a+c^2\right)}+1+\frac{\left(c+a\right)\left(a+b\right)}{\left(c+b\right)^2}\)

\(=3+\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}+\frac{\left(b+a\right)\left(c+b\right)}{\left(a+c\right)^2}+\frac{\left(c+a\right)\left(a+b\right)}{\left(c+b\right)^2}\ge\)

\(3+\sqrt[3]{\frac{\left(c+a\right)\left(c+b\right)\left(b+a\right)\left(c+b\right)\left(c+a\right)\left(a+b\right)}{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}}=3+3=6\)



Vậy bài toán đã được chứng minh. Đẳng thức xảy ra khi và chỉ khi a=b=c=13√.■

Bình luận (0)
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
alibaba nguyễn
31 tháng 3 2021 lúc 13:53

Đề phải là số thực không âm mới đúng

Bình luận (0)
 Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Đặng Bảo Trâm
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Nguyễn Khang
Xem chi tiết
Trần Bá Định
8 tháng 9 2019 lúc 20:37

WTF Toán Lớp 1

Bình luận (0)
Nguyễn Khang
8 tháng 9 2019 lúc 20:40

thấy mẹ nhầm rồi,  quy đồng quên nhân:(( mai rảnh check lại:((

Bình luận (0)
Thúy Hiền Nguyễn
Xem chi tiết
Phùng Minh Quân
13 tháng 7 2020 lúc 18:26

\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)

Bình luận (0)
 Khách vãng lai đã xóa
Phùng Minh Quân
13 tháng 7 2020 lúc 18:42

\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)

\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)

Bình luận (0)
 Khách vãng lai đã xóa
Phùng Minh Quân
13 tháng 7 2020 lúc 18:46

\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b+2c}{27}+\frac{b+2c}{27}\ge\frac{a}{3}\)\(\Leftrightarrow\)\(\frac{a^3}{\left(b+2c\right)^2}\ge\frac{1}{3}a-\frac{2}{27}b-\frac{4}{27}c\)

tương tự rồi cộng lại

Bình luận (0)
 Khách vãng lai đã xóa
Phạm hải vương
Xem chi tiết
Agatsuma Zenitsu
22 tháng 1 2020 lúc 9:26

Áp dụng BĐT Cô-si cho 3 số dương ta có:

\(\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(\sqrt[3]{\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)}\right)^4\)

Ta chứng minh: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\left(1+\frac{3}{2+abc}\right)^3\left(1\right)\)

Theo BĐT Cô - si ta có:

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\)

\(\ge1+\frac{3}{\sqrt[3]{abc}}+\frac{3}{\sqrt[3]{\left(abc\right)^2}}+\frac{1}{abc}=\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\ge\left(1+\frac{3}{2+abc}\right)^3\)

(Vì \(abc+2=abc+1+1\ge3\sqrt[3]{abc}\))

Vậy \(\left(1\right)\) được chứng minh \(\Rightarrow BĐT\) đúng \(\forall a,b,c>0\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
Kudo Shinichi
22 tháng 1 2020 lúc 9:41

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow VT\ge3\sqrt[3]{\left[\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\right]^4}\)

\(\Rightarrow VT\ge3\left(\sqrt[3]{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}}\right)^4\left(1\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\\\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2}}\end{cases}}\)

\(\Rightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge1+3\sqrt[3]{\frac{1}{abc}}\)

\(+3\sqrt[3]{\frac{1}{a^2b^2c^2}}+\frac{1}{abc}\)

\(\Rightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\)

\(\Rightarrow3\left(\sqrt[3]{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}}\right)^4\)

\(\ge3\left(1+\frac{1}{\sqrt[3]{abc}}\right)^4\)

\(\left(2\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\sqrt[3]{abc}\le\frac{abc+1+1}{3}=\frac{abc+2}{3}\)

\(\Rightarrow1+\frac{1}{\sqrt[3]{abc}}\ge1+\frac{3}{abc+2}\)

\(\Rightarrow3\left(1+\frac{1}{\sqrt[3]{abc}}\right)^4\ge3\left(1+\frac{3}{abc+2}\right)^4\left(3\right)\)

Từ (1) , (2) và (3) 

\(\Rightarrow VT\ge3\left(1+\frac{3}{abc+2}\right)^4\)

\(\Leftrightarrow\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(1+\frac{3}{2+abc}\right)^4\left(đpcm\right)\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa